

EM27C010 1-Megabit (128K x 8) UVPROM

Features

- Functional Compatible to AMD, TI, WSI's 27C010
- Fast Read Access Time 70 ns
- Low-Power CMOS Operation
 - 100 µA Max Standby
 - 30 mA Max Active at 5 MHz
- JEDEC Standard Packages 32-lead ceramic DIP
- 5V ± 10% Supply
- Rapid Programming Algorithm 100 µs/Byte (Typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Industrial, Extended Temperature Ranges and Military Screening

1. Description

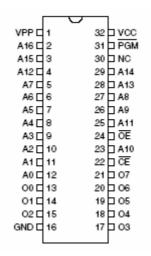
The EM27C010 is fabricated using high-density nonvolatile memory CMOS process and is assembled and tested in EM Semi approved assembly and test facilities. The device is offered in industrial, extended and a version screened to a military test flow.

The EM27C010 is a low-power, high-performance 1,048,576-bit UVPROM organized 128K by 8 bits. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed as fast as 70 ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

The EM27C010 is available in industry-standard JEDEC-approved ceramic DIP packages. All devices feature two-line control (CE_{NOT}, OE_{NOT}) to give designers the flexibility to prevent bus contention.

With 128K byte storage capability, the EM27C010 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

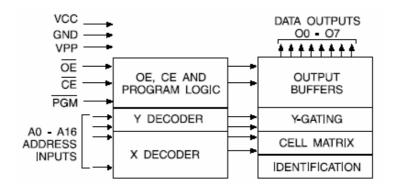
EM27C010 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages.


1

2. Pin Configurations

Pin Name	Function
A0 – A16	Addresses
00 – 07	Outputs
CE _{NOT}	Chip Enable
OE _{NOT}	Output Enable
PGM _{NOT}	Program Strobe
V _{PP}	Program Supply
V _{CC}	Supply Voltage
GND	Ground
NC	Not Connected

2.1 32-lead Ceramic DIP Top View



3. System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the Vcc and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the Vcc and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

4. Block Diagram

5. Absolute Maximum Ratings*

Temperature Under Bias55°C to + 125°C
Storage Temperature65°C to + 150°C
Supply Voltage2.0V to +7.0V
Voltage on Any Pin with
Respect to Ground2.0V to + 7.0V ₍₁₎
Voltage on A9 with
Respect to Ground2.0V to + 13.5V ₍₁₎
VPP Supply Voltage with
Respect to Ground2.0V to + 14.0V ₍₁₎

* NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Minimum voltage is -0.5V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is Vcc + 0.5V DC which may overshoot to +7.0 volts for pulses of less than 20 ns.

6. Operating Modes

Mode/Pin	CE _{NOT}	OE _{NOT}	PGM _{NOT}	A9	Vpp	Outputs
Read	VIL	VIL	X	X	V _{CC} or GND	D оит
Output Disable	VIL	Vıн	Х	X	V _{CC} or GND	High Z
Standby	VIH	Х	Х	X	V _{CC} or GND	High Z
Rapid Program ₍₂₎	VIL	ViH	VIL	X	V_{PP}	Din
PGM Verify	VIL	VIL	Vıн	X	V_{PP}	D оит
PGM Inhibit	ViH	Х	Х	X	V_{PP}	High Z
Product Identification(4)	VIL	VIL	ViH	Vн	V _{cc}	Identification Code

- 1. X can be VIL or VIH.
- 2. Refer to Programming Characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.

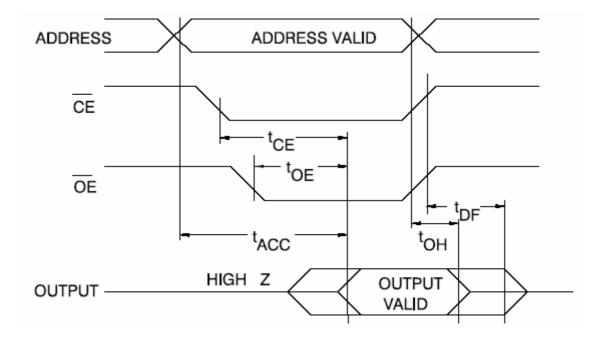
7. DC and AC Operating Conditions for Read Operation

		EM27C010
		-70 / -90 / -120
	Industrial	-40°C - 85°C
Operating Temp.(Case)	Extended	-45°C - 115°C
	Military	-55°C - 125°C
Vcc Supply		5V ± 10%

8. DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
l	Input Load Current	V _{IN} = 0V to V _{CC}	Ind.		±10	μΑ
lu	Input Load Current	VIN = UV tO VCC	Mil.		±10	μΑ
l	Output Laskana Cumant	\/ 0\/ to \/	Ind.		±10	μΑ
ILO	Output Leakage Current	Vout = 0V to Vcc	Mil.		±10	μΑ
I _{PP(2)}	V _{PP} Read/Standby Current	Vpp = Vcc	Vpp = Vcc			μΑ
1	V Cton dhy Cymrait	IsB1(CMOS), CE _{NOT} = Vcc - 0.2V			100	μΑ
lsв	Vcc Standby Current	Isb2(TTL), $CE_{NOT} = V_{IH}$		1	mA	
Icc	Vcc Active Current	f = 5 MHz, lout= 0 mA, C	f = 5 MHz, lout= 0 mA, CE _{NOT} , OE _{NOT} = VIL		30	mA
VIL	Input Low Voltage			-0.3	0.8	V
VIH (2)	Input High Voltage			2.0	Vcc + 1	V
Vol	Output Low Voltage	IoL = 2.1 mA			0.4	V
	Output High Voltage	V _{OH} (CMOS), Iοн= -100 μΑ	V _{CC} - 0.7		V	
Vон	Output High Voltage	V _{OH} (TTL), I _{OH} = -400 μA	2.4		V	

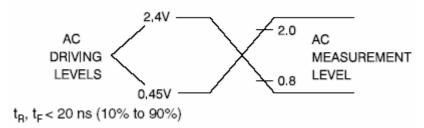
^{1.} Vcc must be applied simultaneously with or before VPP, and removed simultaneously with or after VPP.


^{2.} Maximum DC voltage on Output is V_{CC} + 0.5V.

9. AC Characteristics for Read Operation

			-70		-90		-120		1	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Units	
t _{ACC(3)}	Address to Output Delay	CE _{NOT} = OE _{NOT} = V _{IL}		70		90		120	ns	
t _{CE(2)}	CE _{NOT} to Output Delay	OE _{NOT} = V _{IL}		70		90		120	ns	
t _{OE(2) (3)}	OE _{NOT} to Output Delay	CE _{NOT} = V _{IL}		35		45		60	ns	
t _{DF(4) (5)}	OE _{NOT} or CE _{NOT} High to Output Float, Whichever Occurred First			30		30		40	ns	
t _{OH}	Output Hold from Address, CE _{NOT} or OE _{NOT} , Whichever Occurred First	$CE_{NOT} = OE_{NOT} = V_{IL}$	0		0		0		ns	

10. AC Waveforms for Read Operation(1)



- 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .
- 2. OE_{NOT} may be delayed up to tce toe after the falling edge of CE_{NOT} without impact on tce.
- 3. OE_{NOT} may be delayed up to tacc toe after the address is valid without impact on tacc.
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.



11. Input Test Waveforms and Measurement Levels

For -90 devices only:

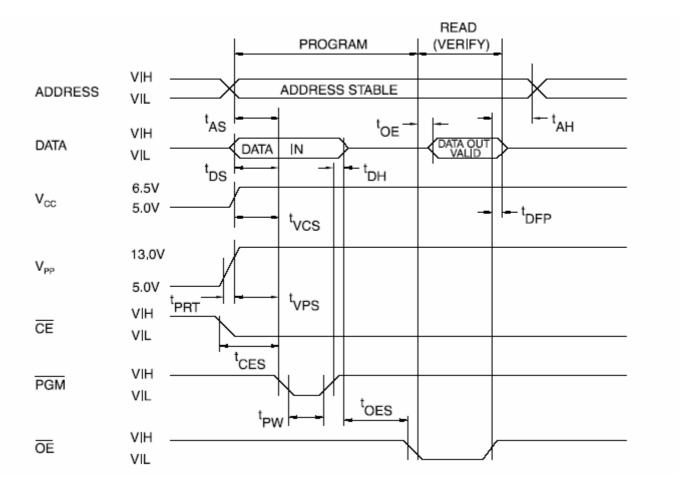
12. Output Test Load

Note:

1. $C_L = 100 \text{ pF}$ including jig capacitance, except for high speed devices, where $C_L = 30 \text{ pF}$.

13. Pin Capacitance

 $f = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$ (1)


Symbol	Тур	Max	Units	Conditions
Cin	4	8	pF	VIN= 0V
Соит	8	12	pF	Vout= 0V

Note:

1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

14. Programming Waveforms(1)

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH}.
- 2. to E and to FP are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the EM27C010, a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

15. DC Programming Characteristics

 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.00 \pm 0.25$ V

			Lin	Limits	
Symbol	Parameter	Test Conditions	Min	Max	Units
lu	Input Load Current	0 <= VIN <= VIH		±10	μA
VIL	Input Low Level		-0.6	0.8	V
VIH	Input High Level		2.0	Vcc+1	V
Vol	Output Low Voltage	IoL = 2.1 mA		0.4	V
Vон	Output High Voltage	Іон = -400 μΑ	2.4		V
Icc2	Vcc Supply Current (Program and Verify)			50	mA
IPP2	VPP Supply Current	CE _{NOT} = PGM _{NOT} =VIL		50	mA
Vid	A9 Product Identification Voltage		11.5	12.5	V

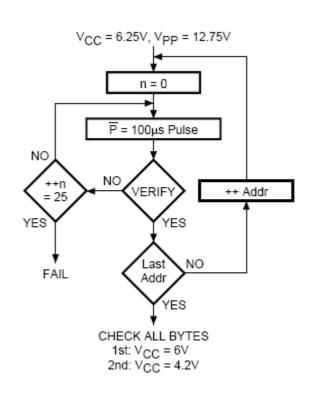
16. AC Programming Characteristics

 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.00 \pm 0.25$ V

			Lir	nits	
Symbol	Parameter	Test Conditions ₍₁₎	Min	Max	Units
t _{AS}	Address Setup Time		2		μs
t _{CES}	CE _{NOT} Setup Time		2		μs
toes	OE _{NOT} Setup Time	Input Rise and Fall Times	2		μs
t _{DS}	Data Setup Time	(10% to 90%) 20 ns	2		μs
t _{AH}	Address Hold Time	Input Pulse Levels	0		μs
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μs
t _{DFP}	OE _{NOT} High to Output Float Delay ₍₂₎	Input Timing Reference Level	0	130	ns
t _{VPS}	V _{PP} Setup Time	0.8V to 2.0V	2		μs
t _{VCS}	V _{CC} Setup Time		2		μs
t _{PW}	PGM _{NOT} Program Pulse Width ₍₃₎	Output Timing Reference Level	95	105	μs
t _{OE}	Data Valid from OE _{NOT}	0.8V to 2.0V		100	ns
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns

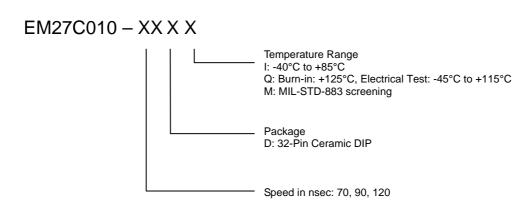
- 1. Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.
- 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100 μ sec \pm 5%.

17. Integrated Product Identification Code


		Pins								Hex
Codes	Α0	07	06	O 5	04	О3	02	01	00	Data
Manufacturer	V_{IL}	0	0	1	0	0	0	0	0	20
Device Type	V _{IH}	0	0	0	0	0	1	0	1	05

18. Programming Algorithm

When delivered (and after each erasure for UVPROM), all bits of the EM27C010 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UVPROM). The EM27C010 is in the programming mode when VPP input is at 12.75V, E is at VIL and P is pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. Vcc is specified to be 6.25V ± 0.25V.


Rapid Programming Algorithm

Rapid Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 26.5 seconds. Rapid programming consists of applying a sequence of 100µs program pulses to each byte until a correct verify occurs (see figure). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides the necessary margin to each programmed cell.

19. Ordering Information

© EM Semi. 2009

EM Semi makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of EM are granted by the Company in connection with the sale of EM products, expressly or by implication. EM's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of the corresponding companies.

Terms and product names in this document may be trademarks of others.